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 A CRM is developed that significantly simplifies
the assessment of the impact of materials,
components, and processes on overall
performance metrics and enables real-time
control of the thermal storage system based on
demand, supply, and state-of-charge of sorption
thermal energy storage systems.

 The present model is successfully validated with
the experimental data, which was collected from
a custom-built S-TES in our lab, under various
operating conditions.

 For heat storage (HS) coated FAM-Z02 S-TES,
the material-based energy storage density
(ESD) of 0.934 MJkgads

-1 (0.607 GJm-3) and
averaged specific power (SP) of 504 Wkgads

-1

are measured.

 For cold energy (CS) coated FAM-Z02 S-TES,
the material-based ESD of 0.493 MJkgads

-1

(0.320 GJm-3) and averaged SP of 267 Wkgads
-1

are obtained.

 Considering the optimum discharge-to-charge
time of 1.6, a maximum SP of 1,207 and 335
Wkgads

-1 are measured for heat storage, HS, and
cold storage, CS, coated S-TES, respectively.

Resistances, capacitances, and heat sources

𝑅௔ௗ௦ି௛௙ Resistance between the sorber bed 
and heating fluid

𝑅௖௢௡ௗି௖௢ Resistance between the condenser 
and coolant fluid

𝑅௔ௗ௦ି௖௢௡ௗ Resistance between the condenser 
and sorber bed

𝐶௔ௗ௦ Thermal capacitance of the sorber bed

𝐶௖௢௡ௗ Thermal capacitance of the condenser

𝑞௔ௗ௦ Heat source in the sorber bed

𝑞௖௢௡ௗ Heat source in the condenser

𝑅௔ௗ௦ି௖௙ Resistance between the sorber bed 
and heating fluid

𝑅௘௩௔௣ି௖௛ Resistance between the condenser 
and coolant fluid

𝑅௘௩௔௣ି௖௢௡ௗ Resistance between the condenser 
and evaporator

𝑅௔ௗ௦ି௘௩௔௣ Resistance between the condenser 
and sorber bed

𝐶௔ௗ௦ Thermal capacitance of the sorber bed

𝐶௘௩௔௣ Thermal capacitance of the condenser

𝑞௔ௗ௦ Heat source in the sorber bed

𝑞௘௩௔௣ Heat source in the condenser

𝑅௔ௗ௦ି௔௠௕ Resistance of the sorber bed

𝐶௔ௗ௦ Thermal capacitance of the sorber bed

 A lumped-parameter capacitance resistance model (CRM) is developed to
design, optimize, and control thermal energy storage (S-TES) systems, which
offers a reasonable trade-off between accuracy and computational time.

 Thermal network of the CRM:

 Assumptions:

 Equations

 The kinetic properties of the sorber bed, including the mass diffusivity (Ds0)
and characteristic energy (Ea), which are obtained from our in-situ mass
measurement of the full-scale sorber bed, are fed to the proposed CRM.

 Thermodynamic equilibrium between sorbent and sorbate.
 Uniform temperature and sorbate distribution inside sorbent.
 Uniform sorbent size
 Negligible heat loss

 Heat balance of the sorber, evaporator and condenser
 Mass balance of sorbate
 Sorption equilibrium equation

 Heat transfer resistance  Resistance
 Thermal mass  Capacitance
 Sorption, evaporation, and condensation energy  Current sources
 Inlet temperatures of HTF, coolant, and chilled water  Voltage sources

Nomenclature
𝑈𝐴௔ௗ௦ (W K-1) Overall heat transfer coefficient of sorber bed 𝑚𝑐௔ௗ௦ (J K-1) Thermal capacitance of the sorber bed 𝑚̇௖௢,௜ (kg s-1) Flow rate of inlet coolant to the condenser 𝑡௖௛ (s) Time of charging
𝑈𝐴௘௩௔௣ (W K-1) Overall heat transfer coefficient of evaporator 𝑚𝑐௘௩௔௣ (J K-1) Thermal capacitance of the evaporator 𝑚̇௛௙,௜ (kg s-1) Flow rate of inlet hot fluid to the sorber bed 𝑡ௗ௖௛ (s) Time of discharging
𝑈𝐴௖௢௡ௗ (W K-1) Overall heat transfer coefficient of condenser 𝑚𝑐௖௢௡ௗ (J K-1) Thermal capacitance of the condenser 𝑚̇௖௙,௜ (kg s-1) Flow rate of inlet cold fluid to the sorber bed 𝑡௦௧௢௥௔௚௘ (s) Time of storage
𝐸ୟ (kJmol-1) Activation energy 𝜔ୣ୯ (kgkgads

-1) Equilibrium water uptake 𝑚̇௖௛,௜ (kg s-1) Flow rate of inlet chilled water from the evaporator ESD (GJm-3, MJkg-1) Energy storage density
𝐷ୗ଴ (m2 s-1) Surface diffusion coefficient in LDF model 𝑚ୟୢୱ (kg) Mass of the sorbent material HTF Heat transfer fluid SP (W kgdry,ads

-1) Specific power


